Author:
Chen Chih-Yang,Matrov Denis,Veale Richard,Onoe Hirotaka,Yoshida Masatoshi,Miura Kenichiro,Isa Tadashi
Abstract
AbstractThe saccade is a stereotypic behavior whose investigation improves our understanding of how primate brains implement precise motor control. Furthermore, saccades offer an important window into the cognitive and attentional state of the brain. Historically, saccade studies have largely relied on macaque. However, the cortical network giving rise to the saccadic command is difficult to study in macaque because relevant cortical areas lie in sulci and are difficult to access. Recently, a New World monkey – the marmoset – has garnered attention as an attractive alternative to macaque because of its smooth cortical surface, its smaller body, and its amenability to transgenic technology. However, adoption of marmoset for oculomotor research has been limited due to a lack of in-depth descriptions of marmoset saccade kinematics and their ability to perform psychophysical and cognitive tasks. Here, we directly compare free-viewing and visually-guided behavior of marmoset, macaque, and human engaged in identical tasks under similar conditions. In video free-viewing task, all species exhibited qualitatively similar saccade kinematics including saccade main sequence up to 25° in amplitude. Furthermore, the conventional bottom-up saliency model predicted gaze targets at similar rates for all species. We further verified their visually-guided behavior by training them with step and gap saccade tasks. All species showed similar gap effect and express saccades in the gap paradigm. Our results suggest that the three species have similar natural and task-guided visuomotor behavior. The marmoset can be trained on saccadic tasks and thus can serve as a model for oculomotor, attention, and cognitive research.New & noteworthyWe directly compared the results of video free-viewing task and visually-guided saccade tasks (step and gap) among three different species: the marmoset, macaque and human. We found that all species exhibit qualitatively similar saccadic behavior and bottom-up saliency albeit with small differences. Our results suggest that the marmoset possesses similar neural mechanisms to macaque and human for saccadic control, and it is an appropriate model animal to study neural mechanisms for active vision and attention.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献