Author:
Blasiak Agata,Lim Jhin Jieh,Seah Shirley Gek Kheng,Kee Theodore,Remus Alexandria,Chye De Hoe,Wong Pui San,Hooi Lissa,Truong Anh T.L.,Le Nguyen,Chan Conrad E.Z.,Desai Rishi,Ding Xianting,Hanson Brendon J.,Chow Edward Kai-Hua,Ho Dean
Abstract
ABSTRACTThe emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) has led to the rapid initiation of urgently needed clinical trials of repurposed drug combinations and monotherapies. These regimens were primarily relying on mechanism-of-action based selection of drugs, many of which have yielded positive in vitro but largely negative clinical outcomes. To overcome this challenge, we report the use of IDentif.AI, a platform that rapidly optimizes infectious disease (ID) combination therapy design using artificial intelligence (AI). In this study, IDentif.AI was implemented on a 12-drug candidate therapy search set representing over 530,000 possible drug combinations. IDentif.AI demonstrated that the optimal combination therapy against SARS-CoV-2 was comprised of remdesivir, ritonavir, and lopinavir, which mediated a 6.5-fold improvement in efficacy over remdesivir alone. Additionally, IDentif.AI showed hydroxychloroquine and azithromycin to be relatively ineffective. The identification of a clinically actionable optimal drug combination was completed within two weeks, with a 3-order of magnitude reduction in the number of tests typically needed. IDentif.AI analysis was also able to independently confirm clinical trial outcomes to date without requiring any data from these trials. The robustness of the IDentif.AI platform suggests that it may be applicable towards rapid development of optimal drug regimens to address current and future outbreaks.
Publisher
Cold Spring Harbor Laboratory