Author:
Brittin Christopher A.,Cook Steven J.,Hall David H.,Emmons Scott W.,Cohen Netta
Abstract
ABSTRACTAnimal nervous system organization is crucial for all body functions and its disruption can manifest in severe cognitive and behavioral impairment. This organization relies on features across scales, from nano-level localization of synapses, through multiplicities of neuronal morphologies and their contribution to circuit organization, to the high level stereotyped connections between different regions of the brain. The sheer complexity of this organ means that to date, we have yet to reconstruct and model the structure of a complete nervous system that is integrated across all these scales. Here, we present a complete structure-function model of the nematode C. elegans main neuropil, the nerve ring, which we derive by integrating the volumetric reconstruction from two animals with corresponding synaptic and gap junctional connectomes. Whereas previously the nerve ring was considered a densely packed tract of axons, we uncover internal organization into 5 functional bundles and show how they spatially constrain and support the synaptic connectome. We find that the C. elegans connectome is not invariant, but that a precisely wired core circuit is embedded in a background of variable connectivity, and propose a corresponding reference connectome for the core circuit. Using this reference, we show that the architecture of the C. elegans brain can be viewed as a modular Residual Network that supports sensory computation and integration, sensory-motor convergence, and brain-wide coordination. These findings point to scalable and robust features of brain organization that are likely universal across phyla.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献