Beyond the connectome: A map of a brain architecture derived from whole-brain volumetric reconstructions

Author:

Brittin Christopher A.,Cook Steven J.,Hall David H.,Emmons Scott W.,Cohen Netta

Abstract

ABSTRACTAnimal nervous system organization is crucial for all body functions and its disruption can manifest in severe cognitive and behavioral impairment. This organization relies on features across scales, from nano-level localization of synapses, through multiplicities of neuronal morphologies and their contribution to circuit organization, to the high level stereotyped connections between different regions of the brain. The sheer complexity of this organ means that to date, we have yet to reconstruct and model the structure of a complete nervous system that is integrated across all these scales. Here, we present a complete structure-function model of the nematode C. elegans main neuropil, the nerve ring, which we derive by integrating the volumetric reconstruction from two animals with corresponding synaptic and gap junctional connectomes. Whereas previously the nerve ring was considered a densely packed tract of axons, we uncover internal organization into 5 functional bundles and show how they spatially constrain and support the synaptic connectome. We find that the C. elegans connectome is not invariant, but that a precisely wired core circuit is embedded in a background of variable connectivity, and propose a corresponding reference connectome for the core circuit. Using this reference, we show that the architecture of the C. elegans brain can be viewed as a modular Residual Network that supports sensory computation and integration, sensory-motor convergence, and brain-wide coordination. These findings point to scalable and robust features of brain organization that are likely universal across phyla.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3