Ca2+-Dependent Regulation by the Cyclic AMP Pathway of Primary Cilium Length in LLC-PK1 Renal Epithelial Cells

Author:

Scarinci Noelia,Perez Paula L.,del Rocío Cantero María,Cantiello Horacio F.

Abstract

AbstractThe primary cilium is a sensory organelle projecting from the apical surface of renal epithelial cells. Dysfunctional cilia have been linked to a number of genetic diseases known as ciliopathies, which include autosomal dominant polycystic kidney disease (ADPKD). Previous studies have determined that renal epithelial primary cilia express both the polycystin-2 (PC2, TRPP2) channel and the type-2 vasopressin receptor (V2R), coupled to local cAMP production. However, little is known as to how Ca2+and cAMP signals lead to changes in the length of the primary cilium. Here, we explored how cAMP signals regulate the length of the primary cilium in wild type LLC-PK1 renal epithelial cells. Primary cilia length was determined by immunocytochemical labeling of the ciliary axoneme. Treatment of cells with the cAMP analog 8-Br-cAMP (1 mM) in normal external Ca2+(1.2 mM) produced a 25.3% increase (p < 0.0001) in the length of the primary cilium, a phenomenon also observed in cells exposed to high external Ca2+(6.2 mM). However, exposure of cells to vasopressin (AVP, 10 μM), which also increases cAMP in primary cilia of LLC-PK1 cells, mimicked the effect of 8-Br-cAMP in normal, but not in high Ca2+. Further, specific gene silencing of PC2 expression further increased primary cilium length after 8-Br-cAMP treatment, in normal, but not high Ca2+. The encompassed data indicate a crosstalk between the cAMP and Ca2+signals to modulate the length of the primary cilium, in a phenomenon that implicates the expression of PC2.Significance StatementMorphological changes in primary cilia have been linked to genetic disorders, including autosomal dominant polycystic kidney disease (ADPKD), a major cause of kidney disease. Both cAMP and Ca2+are universal second messengers that regulate polycystin-2 (PC2, TRPP2), a Ca2+permeable non-selective cation channel implicated in ADPKD, and expressed in the primary cilium of renal epithelial cells. Despite current interest, little is known as to how second messenger systems and how aberrant regulation of PC2 may link primary cilium structure with cyst formation in ADPKD. Here we determined that both the cAMP analog 8-Br-cAMP and vasopressin increase the length of the primary cilium in renal epithelial cells. However, this phenomenon depends of external Ca2+andPKD2gene silencing. Proper cAMP signaling may be essential in the control of the primary cilium of renal epithelial cells, and the onset of cyst formation in ADPKD.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3