Factors enforcing the species boundary between the human pathogensCryptococcus neoformansandCryptococcus deneoformans

Author:

Priest Shelby J.ORCID,Coelho Marco A.ORCID,Mixão VerónicaORCID,Clancey Shelly,Xu YitongORCID,Sun ShengORCID,Gabaldón ToniORCID,Heitman JosephORCID

Abstract

AbstractHybridization has resulted in the origin and variation in extant species, and hybrids continue to arise despite pre- and post-zygotic barriers that limit their formation and evolutionary success. One important system that maintains species boundaries in prokaryotes and eukaryotes is the mismatch repair pathway, which blocks recombination between divergent DNA sequences. Previous studies illuminated the role of the mismatch repair component Msh2 in blocking genetic recombination between divergent DNA during meiosis. Loss of Msh2 results in increased interspecific genetic recombination in bacterial and yeast models, and increased viability of progeny derived from yeast hybrid crosses. Hybrid isolates of two pathogenic fungalCryptococcusspecies,Cryptococcus neoformansandCryptococcus deneoformans,are isolated regularly from both clinical and environmental sources. In the present study, we sought to determine if loss of Msh2 would relax the species boundary betweenC. neoformansandC. deneoformans. We found that crosses between these two species in which both parents lack Msh2 produced hybrid progeny with increased viability and high levels of aneuploidy. Whole-genome sequencing revealed few instances of recombination among hybrid progeny and did not identify increased levels of recombination in progeny derived from parents lacking Msh2. Several hybrid progeny produced structures associated with sexual reproduction when incubated alone on nutrient-rich medium in light, a novel phenotype inCryptococcus. These findings represent a unique, unexpected case where rendering the mismatch repair system defective did not result in increased meiotic recombination across a species boundary. This suggests that alternative pathways or other mismatch repair components limit meiotic recombination between homeologous DNA and enforce species boundaries in the basidiomyceteCryptococcusspecies.Author summarySeveral mechanisms enforce species boundaries by either preventing the formation of hybrids, known as pre-zygotic barriers, or preventing the viability and fecundity of hybrids, known as post-zygotic barriers. Despite these barriers, interspecific hybrids form at an appreciable frequency, such as hybrid isolates of the human fungal pathogenic species,Cryptococcus neoformansandCryptococcus deneoformans, which are regularly isolated from both clinical and environmental sources.C. neoformansxC. deneoformanshybrids are typically highly aneuploid, sterile, and display phenotypes intermediate to those of either parent, although self-fertile isolates and transgressive phenotypes have been observed. One important mechanism known to enforce species boundaries or lead to incipient speciation is the DNA mismatch repair system, which blocks recombination between divergent DNA sequences during meiosis. The aim of this study was to determine if genetically deleting the DNA mismatch repair component Msh2 would relax the species boundary betweenC. neoformansandC. deneoformans. Progeny derived fromC. neoformansxC. deneoformanscrosses in which both parental strains lacked Msh2 had higher viability, and unlike previous studies inSaccharomyces, theseCryptococcushybrid progeny had higher levels of aneuploidy and no observable increase in meiotic recombination at the whole-genome level.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3