Phenotypic changes of bacteria through opportunity and global methylation leads to antibiotic resistance

Author:

Neerathilingam Muniasamy,Mysore Sumukh,Bairy Sneha,Chandola Chetan,Varadharajan Venkadeshwari,Rajasekharan Ram

Abstract

AbstractThe antibiotic stress on bacteria leads to initiation of adaptive mechanisms, including exploiting the available opportunity, if any, for cell survival. In order to use the opportunity for survival while under threat, the microbe undergoes various mechanisms which are not completely known e.g. homologous recombination, horizontal gene transfer etc. Our aim is to understand the adaptive mechanism for cell survival during stress, especially antibiotic stress, in E. coli in the presence of opportunity. Understanding this mechanism in bacteria that gained resistance will help in identifying alternative survival pathways. By subjecting a recombination deficient (ΔRecA) strain of bacteria to antibiotic stress, we expected cell death, due to its inability to repair DNA damage (1, 2). Here we show that providing an opportunity in the form of an antibiotic resistance gene with homologous ends aids bacterial survival. There was 3-fold increase in cell envelope thickness along with 2.5-fold increase in phosphatidylethanolamine (PE) content, and enhanced antibiotic resistance to >4000µg/mL (Kan). We observed genome-wide alteration of methylation pattern that lead to changes in transcriptome, proteome, lipidome, and metabolite level, thus, leading to morphological and physiological changes. We prove that global methylation helps in survival of bacteria under stress that changes essential pathways like energy, cell envelope, lipids, amino acids acid, etc. leading to over production of cell wall components including synthesis of PE. By inhibiting the activity of methyltransferase, it is noticed that there is reduction in PE synthesis in agreement with demethylation. This proves that the phenotypic changes are caused due to the global methylation, and also demonstrates that demethylation could be used as a strategy to prevent antibiotic resistance in microbes.One Sentence SummaryGlobal methylation determines the survival of bacteria to gain the antimicrobial resistance with an opportunity

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3