Tracking the COVID-19 pandemic in Australia using genomics

Author:

Seemann TorstenORCID,Lane Courtney,Sherry Norelle,Duchene Sebastian,Goncalves da Silva Anders,Caly Leon,Sait Michelle,Ballard Susan A,Horan Kristy,Schultz Mark B,Hoang Tuyet,Easton Marion,Dougall Sally,Stinear TimORCID,Druce Julian,Catton mike,Sutton Brett,van Diemen Annaliese,Alpren Charles,Williamson Deborah,Howden Benjamin P

Abstract

BACKGROUND: Whole-genome sequencing of pathogens can improve resolution of outbreak clusters and define possible transmission networks. We applied high-throughput genome sequencing of SARS-CoV-2 to 75% of cases in the State of Victoria (population 6.24 million) in Australia. METHODS: Cases of SARS-CoV-2 infection were detected through active case finding and contact tracing. A dedicated SARS-CoV-2 multidisciplinary genomic response team was formed to enable rapid integration of epidemiological and genomic data. Phylodynamic analysis was performed to assess the putative impact of social restrictions. RESULTS: Between 25 January and 14 April 2020, 1,333 COVID-19 cases were reported in Victoria, with a peak in late March. After applying internal quality control parameters, 903 samples were included in genomic analyses. Sequenced samples from Australia were representative of the global diversity of SARS-CoV-2, consistent with epidemiological findings of multiple importations and limited onward transmission. In total, 76 distinct genomic clusters were identified; these included large clusters associated with social venues, healthcare facilities and cruise ships. Sequencing of sequential samples from 98 patients revealed minimal intra-patient SARS-CoV-2 genomic diversity. Phylodynamic modelling indicated a significant reduction in the effective viral reproductive number (Re) from 1.63 to 0.48 after the implementation of travel restrictions and population-level physical distancing. CONCLUSIONS: Our data provide a comprehensive framework for the use of SARS-CoV-2 genomics in public health responses. The application of genomics to rapidly identify SARS-CoV-2 transmission chains will become critically important as social restrictions ease globally. Public health responses to emergent cases must be swift, highly focused and effective.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3