Characterization of systemic genomic instability in budding yeast

Author:

Sampaio Nadia M. V.ORCID,Ajith V. P.,Watson Ruth A.,Heasley Lydia R.,Chakraborty Parijat,Rodrigues-Prause Aline,Malc Ewa P.,Mieczkowski Piotr A.,Nishant Koodali T.,Argueso Juan LucasORCID

Abstract

ABSTRACTConventional models of genome evolution are centered around the principle that mutations form independently of each other and build up slowly over time. We characterized the occurrence of bursts of genome-wide loss-of-heterozygosity (LOH) inSaccharomyces cerevisiae, providing support for an additional non-independent and faster mode of mutation accumulation. We initially characterized a yeast clone isolated for carrying an LOH event at a specific chromosome site, and surprisingly, found that it also carried multiple unselected rearrangements elsewhere in its genome. Whole genome analysis of over 100 additional clones selected for carrying primary LOH tracts revealed that they too contained unselected structural alterations more often than control clones obtained without any selection. We also measured the rates of coincident LOH at two different chromosomes and found that double LOH formed at rates 14-150 fold higher than expected if the two underlying single LOH events occurred independently of each other. These results were consistent across different strain backgrounds, and in mutants incapable of entering meiosis. Our results indicate that a subset of mitotic cells within a population can experience discrete episodes of systemic genomic instability, when the entire genome becomes vulnerable and multiple chromosomal alterations can form over a narrow time window. They are reminiscent of early reports from the classic yeast genetics literature, as well as recent studies in humans, both in the cancer and genomic disorder contexts. The experimental model we describe provides a system to further dissect the fundamental biological processes responsible for punctuated bursts of structural genomic variation.SIGNIFICANCE STATEMENTMutations are generally thought to accumulate independently and gradually over many generations. Here, we combined complementary experimental approaches in budding yeast to track the appearance of chromosomal changes resulting in loss-of-heterozygosity (LOH). In contrast to the prevailing model, our results provide evidence for the existence of a path for non-independent accumulation of multiple chromosomal alteration events over few generations. These results are analogous to recent reports of bursts of genomic instability in human cells. The experimental model we describe provides a system to further dissect the fundamental biological processes underlying such punctuated bursts of mutation accumulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3