IMiDs induce FAM83F degradation via an interaction with CK1α to attenuate Wnt signalling

Author:

Dunbar KarenORCID,Macartney Thomas J.,Sapkota Gopal P.ORCID

Abstract

ABSTRACTImmunomodulatory imide drugs (IMiDs) bind CRBN, a substrate receptor of the Cul4A E3 ligase complex, enabling neo-substrate recruitment and degradation via the ubiquitin-proteasome system. Here, we report FAM83F as such a neo-substrate. We recently showed that the eight FAM83 proteins (A-H) interact with members of the serine/threonine protein kinase CK1 family, to regulate their subcellular distribution and distinct biological roles. CK1α is a well-established IMiD neo-substrate and we demonstrate here that IMiD-induced FAM83F degradation requires its association with CK1α. Despite all FAM83 proteins interacting with CK1α, no other FAM83 protein is degraded by IMiDs. FAM83F is localised to the plasma membrane, and consistent with this, IMiD treatment results in depletion of both FAM83F and CK1α levels from the plasma membrane. We have recently identified FAM83F as a mediator of the canonical Wnt signalling pathway. The IMiD-induced degradation of FAM83F attenuated Wnt signalling in colorectal cancer cells and removed CK1α from the plasma membrane, mirroring the phenotypes observed with genetic ablation of FAM83F. Intriguingly, in many cancer cell lines, IMiD-induced degradation of CK1α is only modest and incomplete. In line with this observation, the expression of FAM83G, which also binds to CK1α, appears to attenuate the IMiD-induced degradation of CK1α, suggesting a protective role for FAM83G on CK1α. Our findings reveal that the efficiency of target protein degradation by IMiDs, and perhaps other degraders such as PROTACs, relies on the nature of the inherent multiprotein complex in which the target protein exists. Our findings unearth opportunities for developing degraders to target specific protein complexes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3