Inhibition of tryptophan 2,3-dioxygenase impairs DNA damage tolerance and repair in glioma cells

Author:

Reed Megan R.,Maddukuri Leena,Ketkar Amit,Byrum Stephanie D.,Zafar Maroof K.,Bostian April C. L.,Tackett Alan J.,Eoff Robert L.ORCID

Abstract

ABSTRACTAberrant expression of tryptophan 2,3-dioxygenase (TDO) is a determinant of malignancy and immune response in gliomas in part through kynurenine (KYN)-mediated activation of the aryl hydrocarbon receptor (AhR). In the current study, we investigated the hypothesis that TDO activation in gliomas has a broad impact upon genome maintenance - promoting tolerance of replication stress (RS) and repair of DNA damage. We report that inhibition of TDO activity attenuated recovery from hydroxyurea (HU)-induced RS and increased the genotoxic effects of bis-chloroethylnitrosourea (BCNU), as fork progress was impeded when TDO-deficient glioma cells were treated with BCNU. Activation of the Chk1 arm of the replication stress response (RSR) was reduced when TDO activity was blocked prior to treatment with BCNU, whereas phosphorylation of serine 33 (pS33) on replication protein A (RPA) was enhanced – indicative of increased fork collapse. Restoration of KYN levels protected against some replication-associated effects of BCNU. Inhibition of TDO activity had a strong anti-proliferative effect on glioma-derived cells – enhancing the cytotoxic effects of BCNU. Analysis of results obtained using quantitative proteomics revealed TDO-dependent changes in several signaling pathways – including down-regulation of DNA repair factors and sirtuin signaling. Consistent with these observations, inhibition of TDO diminished SIRT7 recruitment to chromatin, which increased histone H3K18 acetylation – a key mark involved in 53BP1 recruitment to sites of DNA damage. Cells lacking TDO activity exhibited defective recruitment of 53BP1 to gH2AX foci, which corresponded with delayed repair of BCNU-induced DNA breaks. Addition of exogenous KYN increased the rate of break repair. The discovery that TDO activity modulates sensitivity to DNA damage by fueling SIRT7/53BP1 localization to chromatin and repair of BCNU-induced DNA damage highlights the potential for tumor-specific metabolic changes to influence genome stability and may have implications for glioma biology and treatment strategies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3