Abstract
AbstractDespite many attempts to introduce evolutionary models that permit substitutions that instantly alter more than one nucleotide in a codon, the prevailing wisdom remains that such changes are rare and generally negligible (or are reflective of non-biological artifacts, such as alignment errors), and codon models continue to posit that only single nucleotide change have non-zero rates. We develop and test a simple hierarchy of codon-substitution models with non-zero evolutionary rates for only one-nucleotide (1H), one- and two-nucleotide (2H), or any (3H) codon substitutions. Using 35,000 empirical alignments, we find widespread statistical support for multiple hits: 58% of alignments prefer models with 2H allowed, and 22% – with 3H allowed. Analyses of simulated data suggest that these results are not likely to be due to simple artifacts such as model misclassification or alignment errors. Further modeling revealed that synonymous codon island jumping among codons encoding serine, especially along short branches, contributes significantly to this 3H signal. While serine codons were prominently involved in multiple-hit substitutions, there were other common exchanges contributing to better model fit. It appears that a small subset of sites in most alignments have unusual evolutionary dynamics not well explained by existing model formalisms, and that commonly estimated quantities, such as dN/dS ratios may be biased by model misspecification. Our findings highlight the need for continued evaluation of assumptions underlying workhorse evolutionary models and subsequent evolutionary inference techniques. We provide a software implementation for evolutionary biologists to assess the potential impact of extra base hits in their data in the HyPhy package.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献