Discovery of repurposing drug candidates for the treatment of diseases caused by pathogenic free-living amoebae

Author:

Rice Christopher A.,Colon Beatrice L.ORCID,Chen Emily,Hull Mitchell V.ORCID,Kyle Dennis E.ORCID

Abstract

AbstractDiseases caused by pathogenic free-living amoebae include primary amoebic meningoencephalitis (Naegleria fowleri), granulomatous amoebic encephalitis (Acanthamoeba spp.), Acanthamoeba keratitis, and Balamuthia amoebic encephalitis (Balamuthia mandrillaris). Each of these are difficult to treat and have high morbidity and mortality rates due to lack of effective therapeutics. In pursuit of repurposing drugs for chemotherapies, we conducted a high throughput phenotypic screen of 12,000 compounds from the Calibr ReFRAME library. We discovered a total of 58 potent inhibitors (IC50 <1 μM) against N. fowleri (n=19), A. castellanii (n=12), and B. mandrillaris (n=27) plus an additional 90 micromolar inhibitors. Of these, 113 inhibitors have never been reported to have activity against Naegleria, Acanthamoeba or Balamuthia. Rapid onset of action is important for new anti-amoeba drugs and we identified 19 compounds that inhibit N. fowleri in vitro within 24 hours (halofuginone, NVP-HSP990, fumagillin, bardoxolone, belaronib, and BPH-942, solithromycin, nitracrine, quisinostat, pabinostat, pracinostat, dacinostat, fimepinostat, sanguinarium, radicicol, acriflavine, REP3132, BC-3205 and PF-4287881). These compounds inhibit N. fowleri in vitro faster than any of the drugs currently used for chemotherapy. The results of these studies demonstrate the utility of phenotypic screens for discovery of new drugs for pathogenic free-living amoebae, including Acanthamoeba for the first time. Given that many of the repurposed drugs have known mechanisms of action, these compounds can be used to validate new targets for structure-based drug design.Author SummaryFree-living amoebae (FLA) are ubiquitous in soil and freshwater and most are non-pathogenic to people; however, three different pathogenic FLA have been found to cause severe, most often fatal diseases in humans. Due to poor detection and inadequate treatment options available for pathogenic FLA, the fatality rates are still > 90% for the diseases caused by Balamuthia mandrillaris, Naegleria fowleri, and Acanthamoeba spp. With hundreds of cases in the United States and many more cases reported worldwide, there is still an urgent clinical need for effective diagnosis and specific treatments discovered against these opportunistic parasites. Drug repurposing is a powerful approach for drug-discovery because it significantly improves the discovery time, reduces the amount of resources, and decreases costs required to advance lead candidate drugs of interest into the clinic. This is extremely helpful for neglected diseases including pathogenic FLA where there is a need for new active therapies with limited budgets. This report addresses the discovery of new active drugs with potential for repurposing, multiple new drug classes that inhibit pathogenic FLA, and numerous putative drug targets that can be used as tools for further investigation and structure-based drug design.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3