Mining Twitter Data on COVID-19 for Sentiment analysis and frequent patterns Discovery

Author:

Drias Habiba H.ORCID,Drias YassineORCID

Abstract

A study with a societal objective was carried out on people exchanging on social networks and more particularly on Twitter to observe their feelings on the COVID-19. A dataset of more than 600,000 tweets with hashtags like COVID and coronavirus posted between February 27, 2020 and March 25, 2020 was built. An exploratory treatment of the number of tweets posted by country, by language and other parameters revealed an overview of the apprehension of the pandemic around the world. A sentiment analysis was elaborated on the basis of the tweets posted in English because these constitute the great majority. On the other hand, the FP-Growth algorithm was adapted to the tweets in order to discover the most frequent patterns and its derived association rules, in order to highlight the tweeters insights relatively to COVID-19.

Publisher

Cold Spring Harbor Laboratory

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensemble Model for Detecting Phishing and Trojan using Latest Machine Learning Technique;International Journal of Advanced Research in Science, Communication and Technology;2024-03-16

2. Sentiment Analysis of COVID-19 Lockdown in India;Lecture Notes in Networks and Systems;2024

3. Emotion Analysis on COVID-related Twitter Tweets;2023 International Conference on Computational Science and Computational Intelligence (CSCI);2023-12-13

4. Improving Sentiment Prediction of Textual Tweets Using Feature Fusion and Deep Machine Ensemble Model;Electronics;2023-03-09

5. Analyzing the Effect of COVID-19 on Education by Processing Users’ Sentiments;Big Data and Cognitive Computing;2023-01-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3