Analysis of SARS-CoV-2 RNA-Sequences by Interpretable Machine Learning Models

Author:

Kaden MarikaORCID,Bohnsack Katrin Sophie,Weber MirkoORCID,Kudła Mateusz,Gutowska KajaORCID,Blazewicz Jacek,Villmann ThomasORCID

Abstract

AbstractWe present an approach to investigate SARS-CoV-2 virus sequences based on alignment-free methods for RNA sequence comparison. In particular, we verify a given clustering result for the GISAID data set, which was obtained analyzing the molecular differences in coronavirus populations by phylogenetic trees. For this purpose, we use alignment-free dissimilarity measures for sequences and combine them with learning vector quantization classifiers for virus type discriminant analysis and classification. Those vector quantizers belong to the class of interpretable machine learning methods, which, on the one hand side provide additional knowledge about the classification decisions like discriminant feature correlations, and on the other hand can be equipped with a reject option. This option gives the model the property of self controlled evidence if applied to new data, i.e. the models refuses to make a classification decision, if the model evidence for the presented data is not given. After training such a classifier for the GISAID data set, we apply the obtained classifier model to another but unlabeled SARS-CoV-2 virus data set. On the one hand side, this allows us to assign new sequences to already known virus types and, on the other hand, the rejected sequences allow speculations about new virus types with respect to nucleotide base mutations in the viral sequences.Author summaryThe currently emerging global disease COVID-19 caused by novel SARS-CoV-2 viruses requires all scientific effort to investigate the development of the viral epidemy, the properties of the virus and its types. Investigations of the virus sequence are of special interest. Frequently, those are based on mathematical/statistical analysis. However, machine learning methods represent a promising alternative, if one focuses on interpretable models, i.e. those that do not act as black-boxes. Doing so, we apply variants of Learning Vector Quantizers to analyze the SARS-CoV-2 sequences. We encoded the sequences and compared them in their numerical representations to avoid the computationally costly comparison based on sequence alignments. Our resulting model is interpretable, robust, efficient, and has a self-controlling mechanism regarding the applicability to data. This framework was applied to two data sets concerning SARS-CoV-2. We were able to verify previously published virus type findings for one of the data sets by training our model to accurately identify the virus type of sequences. For sequences without virus type information (second data set), our trained model can predict them. Thereby, we observe a new scattered spreading of the sequences in the data space which probably is caused by mutations in the viral sequences.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3