Slc26a9P2ACre, a new CRE driver to regulate gene expression in the otic placode lineage and other FGFR2b-dependent epithelia

Author:

Urness Lisa D.,Wang Xiaofen,Li Chaoying,Quadros Rolen M.,Harms Donald W.,Gurumurthy Channabasavaiah B.,Mansour Suzanne L.ORCID

Abstract

AbstractPan-otic CRE drivers enable gene regulation throughout the otic placode lineage, comprising the inner ear epithelium and neurons. However, intersection of extra-otic gene-of-interest expression with the CRE lineage can compromise viability and impede auditory analyses. Furthermore, extant pan-otic CREs recombine in auditory and vestibular brain nuclei, making it difficult to ascribe resulting phenotypes solely to the inner ear. We previously identified Slc26a9 as an otic placode-specific target of FGFR2b ligands, FGF3 and FGF10. We show here that Slc26a9 is otic-specific through E10.5, but not required for hearing. We targeted P2ACre to the Slc26a9 stop codon, generating Slc26a9P2ACre mice, and observed CRE activity throughout the otic epithelium and neurons, with little activity evident in the brain. Notably, recombination was detected in many FGFR2b ligand-dependent epithelia. We generated Fgf10 and Fgf8 conditional mutants, and activated an FGFR2b ligand trap from E17.5-P3. In contrast to analogous mice generated with other pan-otic CREs, these were viable. Auditory thresholds were elevated in mutants, and correlated with cochlear epithelial cell losses. Thus, Slc26a9P2ACre provides a useful complement to existing pan-otic CRE drivers, particularly for postnatal analyses.Summary statementWe describe a new pan-otic CRE driver, Slc26a9P2ACre, with little activity in the brain or middle ear, and demonstrate its utility by manipulating FGF signaling and assessing hearing loss.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3