Author:
George Vivek Kurien,Puppo Francesca,Silva Gabriel A.
Abstract
AbstractUnderstanding how the structural connectivity of a network constrains the dynamics it is able to support is a very active and open area of research. We simulated the plausible dynamics resulting from the known C. elegans connectome using a recent model and theoretical analysis that computes the dynamics of neurobiological networks by focusing on how local interactions among connected neurons give rise to the global dynamics in an emergent way, independent of the biophysical or molecular details of the cells themselves. We studied the dynamics which resulted from stimulating a chemosensory neuron (ASEL) in a known feeding circuit, both in isolation and embedded in the full connectome. We show that contralateral motor neuron activations in ventral (VB) and dorsal (DB) classes of motor neurons emerged from the simulations, which are qualitatively similar to rhythmic motor neuron firing pattern associated with locomotion of the worm. One interpretation of these results is that there is an inherent - and we propose - purposeful structural wiring to the C. elegans connectome that has evolved to serve specific behavioral functions. To study network signaling pathways responsible for the dynamics we developed an analytic framework that constructs Temporal Sequences (TSeq), time-ordered walks of signals on graphs. We found that only 5% of TSeq are preserved between the isolated feeding network relative to its embedded counterpart. The remaining 95% of signaling pathways computed in the isolated network are not present in the embedded network. This suggests a cautionary note for computational studies of isolated neurobiological circuits and networks.
Publisher
Cold Spring Harbor Laboratory
Reference71 articles.
1. Whole-brain functional imaging at cellular resolution using light-sheet microscopy;Nature Methods,2013
2. Network motifs: theory and experimental approaches
3. Z. F. Altun , L. Herndon , C. Wolkow , C. Crocker , R. Lints , and D. H. Hall . WormAtlas, 2002. Reporter: WormAtlas.
4. Topological dynamics on finite directed graphs;arXiv:1501.07509 [math],2016
5. Beyond the connectome: How neuromodulators shape neural circuits