A novel method to isolate free-floating extracellular DNA from wastewater for quantitation and metagenomic profiling of mobile genetic elements and antibiotic resistance genes

Author:

Calderón-Franco DavidORCID,van Loosdrecht Mark C. M.ORCID,Abeel ThomasORCID,Weissbrodt David G.ORCID

Abstract

AbstractAntibiotic resistant genes (ARGs) and mobile genetic elements (MGEs) can be found in the free-floating extracellular DNA (eDNA) fraction of microbial systems. These xenogenic components can generate bacterial cells resistant to one or more antibiotics by natural transformation. Because of low concentration in wastewater, the obtaining of a high quality and a high yield of eDNA extract is challenging. We developed a method using chromatography to isolate eDNA without causing cell lysis (often unchecked) from complex wastewater matrices. The chromatographic step involved a diethylaminoethyl-cellulose-monolithic column to capture the eDNA found in cell-free filtered wastewater samples (e.g. influent wastewater, activated sludge and treated effluent wastewaster). Free-floating eDNA yields from 1 L of influent, activated sludge and treated effluent water reached 12.5 ± 1.9 μg, 12.3 ± 1 μg and 5.6 ± 2.9 μg of raw eDNA and 9.0 ± 0.7 μg, 5.6 ± 0.46 μg and 2.6 ± 1.3 μg of purified eDNA, respectively. In order to check the suitability of free-floating eDNA extracts for molecular analysis, qPCR and metagenomics were performed. eDNA extracts from treated effluent water were analyzed by qPCR to quantify a selected panel of ARGs and MGEs. Microbiome, resistome, and mobilome profiles from activated sludge free-floating eDNA were measured by metagenomic sequencing. Between iDNA and eDNA fractions, qPCR showed differences of 0.94, 1.11, 1.92 and 1.32 log10 gene copies mL−1 for sulfonamides resistant genes (sul1 and sul2), β-lactamase resistance gene blaCTXM, and the class 1 integron-integrase (intI1) MGE, respectively. These differences highlighted the crucial need for an isolation method to discern both iDNA and eDNA to understand ARGs persistence and quantity in complex cultures. The eDNA yields obtained from 1 L of activated sludge (3.6 g of total suspended solids L−1) samples were substantially higher than the amount of DNA template needed for high-throughput sequencing (>1 μg) in service facilities. Subsystems classification showed that the eDNA metagenome was mainly composed by MGEs (65.1%). The 35.9% rest related to traditional functional genetic signatures. It was the first time the resistome from the eDNA fraction was analyzed showing lower number of primary aligned reads when compared to the iDNA and a predominance of aminoglycosides and β-lactamams. Metagenome results showed that eDNA can not be discarded as a pool of ARGs and MGEs for horizontal gene transfer. This novel isolation method was powerful to elucidate the molecular compositions of free-floating eDNA fractions in complex environmental samples such as wastewater environments at different microbial densities. Data obtained using this extraction method will foster xenogenic and microbial risk assessments across urban and natural water systems. This will support water authorities in the delineation of measures to adopt at wastewater treatment plants to remove them and safeguard environmental and public health.Graphical abstractPicture created with BioRender

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3