Abstract
AbstractReal-time noninvasive monitoring of cerebral blood flow during surgery could improve the morbidity and mortality rates associated with hypothermic circulatory arrests (HCA) in adult cardiac patients. In this study, we used a combined frequency domain near-infrared spectroscopy (FDNIRS) and diffuse correlation spectroscopy (DCS) system to measure cerebral oxygen saturation (SO2) and an index of blood flow (CBFi) in 12 adults going under cardiac surgery with HCA. Our measurements revealed that a negligible amount of blood is delivered to the brain during HCA with retrograde cerebral perfusion (RCP), indistinguishable from HCA-only cases (CBFi drops of 91% ± 3% and 96% ± 2%, respectively) and that CBFi drops for both are significantly higher than drops during HCA with antegrade cerebral perfusion (ACP) (p = 0.003). We conclude that FDNIRS-DCS can be a powerful tool to optimize cerebral perfusion, and that RCP needs to be further examined to confirm its efficacy, or lack thereof.
Publisher
Cold Spring Harbor Laboratory