Where in the leaf is intercellular CO2 (Ci)? Considerations and recommendations for assessing gaseous diffusion in leaves

Author:

Stinziano Joseph R.ORCID,Tominaga JunORCID,Hanson David T.ORCID

Abstract

AbstractThe assumptions that water vapor exchange occurs exclusively through stomata, that the intercellular airspace is fully saturated with water vapor, and that CO2 gradients are negligible between stomata and the intercellular airspace have enabled significant advancements in photosynthetic gas exchange research for nearly 60 years via calculation of intercellular CO2 (Ci). However, available evidence suggests that these assumptions may be overused. Here we review the literature surrounding evidence for and against the assumptions made by Moss & Rawlins (1963). We reinterpret data from the literature by propagating different rates of cuticular water loss, CO2 gradients, and unsaturation through the data. We find that in general, when cuticle conductance is less than 1% of stomatal conductance, the assumption that water vapor exchange occurs exclusively through stomata has a marginal effect on gas exchange calculations, but this is not true when cuticle conductance exceeds 5% of stomatal conductance. Our analyses further suggest that CO2 and water vapor gradients have stronger impacts at higher stomatal conductance, while cuticle conductance has a greater impact at lower stomatal conductance. Therefore, we recommend directly measuring Ci whenever possible, measuring apoplastic water potentials to estimate humidity inside the leaf, and exercising caution when interpreting data under conditions of high temperature and/or low stomatal conductance, and when a species is known to have high cuticular conductance.HighlightLeaf water vapor and CO2 exchange have been successfully used to model photosynthetic biochemistry. We review critical assumptions in these models and make recommendations about which need to be re-assessed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3