In Vitro Reconstitution of Dynein Force Exertion in Bulk Cytoplasm

Author:

Palenzuela Héliciane,Lacroix Benjamin,Sallé Jérémy,Minami Katsuhiko,Shima Tomohiro,Jegou AntoineORCID,Romet-Lemonne Guillaume,Minc Nicolas

Abstract

SUMMARYThe forces generated by Microtubules (MTs) and their associated motors orchestrate essential cellular processes ranging from vesicular trafficking to centrosome positioning [1, 2]. To date, most studies have focused on force exertion from motors anchored on a static surface, such as the cell cortex in vivo or glass surfaces in vitro [2–4]. However, motors also transport large cargos and endomembrane networks, whose hydrodynamic interactions with the viscous cytoplasm should generate sizable forces in bulk. Such forces may contribute to MT aster centration, organization and orientation [5–14], but have yet to be evidenced and studied in a minimal reconstituted system. By developing a bulk motility assay, based on stabilized MTs and dynein-coated beads freely floating in a viscous medium away from any surface, we demonstrate that the motion of a cargo exerts a pulling force on the MT and propels it in opposite direction. Quantification of resulting MT movements for different motors, motor velocities, over a range of cargo size and medium viscosities, shows that the efficiency of this mechanism is primarily determined by cargo size and MT length. Forces exerted by cargos are additive, allowing us to recapitulate tug-of-war situations, or bi-dimensional motions of minimal asters. These data also reveal unappreciated effects of the nature of viscous crowders and hydrodynamic interactions between cargos and MTs, likely relevant to understand this mode of force exertion in living cells. This study places endomembrane transport as a significant mode of MT force exertion with far-reaching consequences for cellular organization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3