Alteration of Substrate-Induced Conformational Changes ofEscherichia coliMelibiose Permease by Mutating Arg149

Author:

Lin Yibin

Abstract

AbstractFourier transform infrared difference spectroscopy and fluorescence spectroscopic techniques have been used to obtain information about substrate-induced structural changes of the melibiose permease mutant R149C, compared with the Cys-less, which were reconstituted into liposomes. ATR-FTIR evidences show that Na+-induced difference spectra of R149C and Cys-less are similar. However, Na+induces some new peaks for R149C mutant permease. This means that replacement of Arg-149 by Cys may affect the structure of MelB, and then affect the binding of Na+. Melibiose-induced difference spectra of R149C in the presence of Na+show some peaks in the amide I region not seen in Cys-less, corresponding to turns, β-sheets, α-helix changes. This suggests that R149C mutant permease undergo some different secondary structure changes compared to Cys-less mutant permease, when binding melibiose. Comparison of the permease intrinsic fluorescence variations of R149C and Cys-less indicate that there are similar substrate binding properties between R149C and Cys-less. When analyzing the effects of different sugars it appears that the R149C mutant is more sensitive to the sugar. All these data indicate that replacement of Arg-149 by Cys will affect Na+and sugar binding, and enhance the selectivity and sensitivity to sugars.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3