Lack of Kcnn4 improves mucociliary clearance in muco-obstructive lung disease

Author:

Vega Génesis,Guequén Anita,Philp Amber R.,Gianotti Ambra,Arzola Lilian,Villalón Manuel,Zegarra-Moran Olga,Galietta Luis J.V.,Mall Marcus A.,Flores Carlos A.

Abstract

ABSTRACTAirway mucociliary clearance (MCC) is the main mechanism of lung defense keeping the airways free of infection and mucus obstruction. Airways surface liquid (ASL) volume, ciliary beating and mucus are central for proper MCC, and are critically regulated by sodium (Na+) absorption and anion secretion. Impaired MCC is a key feature of muco-obstructive disease. The calcium-activated potassium (K+)channel KCa.3.1, encoded by the Kcnn4 gene, participates in intestinal ion secretion and previous studies showed that its activation increase Na+ absorption in airway epithelia, suggesting that hyperpolarization induced by KCa3.1 was sufficient to drive Na+ absorption. However, its role in airway epithelial function is not fully understood. We therefore aimed to elucidate the role of KCa3.1 in MCC in a genetically engineered mouse model. We show that KCa3.1 inhibition reduced Na+ absorption in mouse and human airway epithelium. Furthermore, the genetic deletion of Kcnn4 enhanced cilia beating frequency (CBF) and MCC ex vivo and in vivo. Kcnn4 was silenced in the Scnn1b-transgenic mouse (Scnn1btg/+), a model of muco-obstructive lung disease triggered by increased epithelial Na+-absorption, leading to improvements in MCC and reduction of Na+-absorption. KCa3.1 deletion did not change the amount of mucus but did reduce mucus adhesion, neutrophil infiltration and emphysema. Our data support that KCa3.1 inhibition attenuated muco-obstructive disease in the Scnn1btg/+ mice. K+-channel modulation may be a novel therapeutic strategy to treat muco-obstuctive lung diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3