Clinical predictors of COVID-19 mortality

Author:

Yadaw Arjun S.,Li Yan-chak,Bose Sonali,Iyengar Ravi,Bunyavanich Supinda,Pandey Gaurav

Abstract

Background: The coronavirus disease 2019 (COVID-19) pandemic has affected over millions of individuals and caused hundreds of thousands of deaths worldwide. It can be difficult to accurately predict mortality among COVID-19 patients presenting with a spectrum of complications, hindering the prognostication and management of the disease. Methods: We applied machine learning techniques to clinical data from a large cohort of 5,051 COVID-19 patients treated at the Mount Sinai Health System in New York City, the global COVID-19 epicenter, to predict mortality. Predictors were designed to classify patients into Deceased or Alive mortality classes and were evaluated in terms of the area under the receiver operating characteristic (ROC) curve (AUC score). Findings: Using a development cohort (n=3,841) and a systematic machine learning framework, we identified a COVID-19 mortality predictor that demonstrated high accuracy (AUC=0.91) when applied to test sets of retrospective (n= 961) and prospective (n=249) patients. This mortality predictor was based on five clinical features: age, minimum O2 saturation during encounter, type of patient encounter (inpatient vs. various types of outpatient and telehealth encounters), hydroxychloroquine use, and maximum body temperature. Interpretation: An accurate and parsimonious COVID-19 mortality predictor based on five features may have utility in clinical settings to guide the management and prognostication of patients affected by this disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3