Pretreatment of aged mice with retinoic acid restores alveolar regeneration via upregulation of reciprocal PDGFRA signaling

Author:

Gokey Jason J.,Snowball John,Green Jenna,Waltamath Marion,Spinney Jillian J.,Black Katharine E.,Hariri Lida P.,Xu Yan,Perl Anne-Karina T.

Abstract

AbstractObjectivesIdiopathic Pulmonary Fibrosis (IPF) primarily affects the aged population and is characterized by failure of alveolar regeneration leading to loss of alveolar type 1 cells (AT1). Aged mouse models of lung repair have demonstrated that regeneration fails with increased age. Mouse and rat lung repair models have shown retinoic acid (RA) treatment can restore alveolar regeneration. Herein we seek to determine the signaling mechanisms by which RA treatment prior to injury supports alveolar differentiation.DesignPartial pneumonectomy (PNX) lung injury model and next generation sequencing of sorted cell populations are used to uncover molecular targets regulating alveolar repair. In-vitro organoids generated from Mouse or IPF patient epithelial cells co-cultured with young, aged, or RA pretreated murine mesenchyme are used to test potential targets.Main outcome measurementsKnown alveolar epithelial cell differentiation markers, including HOPX and AGER for AT1 cells are used to assess outcome of treatments.ResultsGene expression analysis of sorted fibroblasts and epithelial cells isolated from lungs of young, aged, and RA treated aged mice predicted increased PDGFA signaling that coincided with regeneration and alveolar epithelial differentiation. Addition of PDGFA induced AT1 and AT2 alveolar differentiation in both mouse and human IPF lung organoids generated with aged fibroblasts and PDGFA monoclonal antibody blocked AT1 cell differentiation in organoids generated with young murine fibroblasts.ConclusionsOur data support the concept that reciprocal PDGFA signaling activates regenerative fibroblasts that support alveolar epithelial cell differentiation and repair, providing a potential therapeutic strategy to influence the pathogenesis of IPF.Key QuestionWhich epithelial-mesenchymal crosstalk pathways are activated by RA pretreatment of aged lungs that support realveolarization after partial pneumonectomy surgery?Bottom LineIncreased PDGFA/PDGFRA signaling in aged lungs promotes regenerative activation of interstitial matrixfibroblast which is required for AT2 to AT1 differentiation and alveolar regeneration.Read OnIn-vitro and in-vivo analysis demonstrated that PDGFA signaling supports alveolar matrixfibroblast and AT1 epithelial cell differentiation, both necessary for alveolar regeneration in aged lungs.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3