Plis de passage in the Superior Temporal Sulcus: Morphology and local connectivity

Author:

Bodin C.ORCID,Pron A.,Le Mao M.,Régis J,Belin P.,Coulon O.

Abstract

AbstractWhile there is a profusion of functional investigations involving the superior temporal sulcus (STS), our knowledge of the anatomy of this sulcus is still limited by a large variability across individuals. Several “plis de passage” (PPs), annectant gyri buried inside the fold, can separate the STS into distinct segments and could explain part of the observed variability. However, an accurate characterization is lacking to properly extract and fully understand the nature of PPs. The aim of the present study is twofold: i. to characterize the STS PPs by directly identifying them within individual STS, using the geometry of the surrounding surface and considering both deep and superficial PPs. ii. to test the hypothesis that PPs constitute local increases of the short-range structural connectivity. Performed on 90 subjects from the Human Connectome Project database, our study revealed that PPs constitute surface landmarks that can be identified from the geometry of the STS walls and that they constitute critical pathways of the U-shaped white-matter connecting the two banks of the STS. Specifically, a larger amount of fibers was extracted at the location of PPs compared to other locations in the STS. This quantity was also larger for superficial PPs than for deep buried ones. These findings raise new hypotheses regarding the relation between the cortical surface geometry and structural connectivity, as well as the possible role of PPs in the functional organization of the STS.

Publisher

Cold Spring Harbor Laboratory

Reference83 articles.

1. Abouzahr, Hana , Ahmad Beyh , Flavio Dell’Acqua , et Marco Catani . 2019. « Longitudinal and vertical fibre systems in the human temporal lobe revealed by tractography ». Organization for Human Brain Mapping conference, Rome.

2. Functional connectivity within the voice perception network and its behavioural relevance;NeuroImage,2018

3. The Location of Feedback-Related Activity in the Midcingulate Cortex Is Predicted by Local Morphology

4. Deep sulcal landmarks: Algorithmic and conceptual improvements in the definition and extraction of sulcal pits;NeuroImage,2015

5. Model-driven harmonic parameterization of the cortical surface: HIP-HOP;Medical Imaging, IEEE Transactions on,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3