Utility of Pan-Family Assays for Rapid Viral Screening: Reducing Delays in Public Health Responses During Pandemics

Author:

Erlichster MichaelORCID,Chana GursharanORCID,Zantomio Daniela,Goudey BenjaminORCID,Skafidas EfstratiosORCID

Abstract

SummaryBackgroundThe SARS-CoV-2 pandemic has highlighted deficiencies in the testing capacity of many developed countries during the early stages of emerging pandemics. Here we describe the potential for pan-family viral assays to improve early accessibility of large-scale nucleic acid testing.MethodsCoronaviruses and SARS-CoV-2 were used as a case-study for investigating the utility of pan-family viral assays during the early stages of a novel pandemic. Specificity of a pan-coronavirus (Pan-CoV) assay for viral detection was assessed using the frequency of common human coronavirus (HCoV) species in key populations. A reported Pan-CoV assay was assessed to determine sensitivity to SARS-CoV-2 and 59 other coronavirus species. The resilience of the primer target regions of this assay to mutation was assessed in 8893 high quality SARS-CoV-2 genomes to predict ongoing utility during pandemic progression.FindingsDue to infection with common HCoV species, a Pan-CoV assay would return a false positive for as few as 1% of asymptomatic adults, but up to 30% of immunocompromised patients displaying symptoms of respiratory disease. Two of the four reported pan-coronavirus assays would have identified SARS-CoV-2 and we demonstrate that with small adjustments to the primers, these assays can accommodate novel variation observed in animal coronaviruses. The assay target region of one well established Pan-CoV assay is highly resistant to mutation compared to regions targeted by other widely applied SARS-CoV-2 RT-PCR assays.InterpretationPan-family assays have the potential to greatly assist management of emerging public health emergencies through prioritization of high-resolution testing or isolation measures, despite limitations in test specificity due to cross-reactivity with common pathogens. Targeting highly conserved genomic regions make pan-family assays robust and resilient to mutation of a given virus. This approach may be applicable to other viral families and has utility as part of a strategic stockpile of tests maintained to better contain spread of novel diseases prior to the widespread availability of specific assays.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3