Light-induced difference FTIR spectroscopy of primate blue-sensitive visual pigment at 163 K

Author:

Hanai Shunpei,Katayama Kota,Imai Hiroo,Kandori Hideki

Abstract

ABSTRACTStructural studies of color visual pigments lag far behind those of rhodopsin for scotopic vision. Using difference FTIR spectroscopy at 77 K, we report the first structural data of three primate color visual pigments, monkey red (MR), green (MG), and blue (MB), where the batho-intermediate (Batho) exhibits photoequilibrium with the unphotolyzed state. This photochromic property is highly advantageous for limited samples since the signal-to-noise ratio is improved, but may not be applicable to late intermediates, because of large structural changes to proteins. Here we report the photochromic property of MB at 163 K, where the BL intermediate, formed by the relaxation of Batho, is in photoequilibrium with the initial MB state. A comparison of the difference FTIR spectra at 77 and 163 K provided information on what happens in the process of transition from Batho to BL in MB. The coupled C11=C12 HOOP vibration in the planer structure in MB is decoupled by distortion in Batho after retinal photoisomerization, but returns to the coupled C11=C12 HOOP vibration in the all-trans chromophore in BL. This suggests that BL harbors a planer all-trans configuration of retinal. The Batho formation accompanies helical structural perturbation, which is relaxed in BL. The H-D unexchangeable X-H stretch weakens the hydrogen bond in Batho, but strengthens it in BL. Protein-bound water molecules that form an extended water cluster near the retinal chromophore change hydrogen bonds differently for Batho and BL, being stronger in the latter than in the initial state. In addition to structural dynamics, the present FTIR spectra at 163 K show no signals of protonated carboxylic acids as well as 77 K, suggesting that E181 is deprotonated in MB, Batho and BL.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3