Tyrosine kinase inhibitors induce mitochondrial dysfunction during cardiomyocyte differentiation through alteration of GATA4-mediated networks

Author:

Liu Qing,Wu Haodi,Luo Qing-Jun,Jiang Chao,Duren Zhana,Van Bortle Kevin,Zhao Ming-tao,Zhao Bingqing,Liu Jun,Marciano David P,Lee-McMullen Brittany,Zhu Chenchen,Narasimha Anil M,Gruber Joshua J,Lipchik Andrew M,Guo Hongchao,Watson Nathaniel K,Tsai Ming-Shian,Furihata Takaaki,Tian Lei,Wei Eric,Li Yingxin,Steinmetz Lars M,Wong Wing Hung,Kay Mark A.,Wu Joseph C,Snyder Michael P

Abstract

SUMMARYMaternal drug exposure during pregnancy increases the risks of developmental cardiotoxicity, leading to congenital heart defects (CHDs). In this study, we used human stem cells as an in-vitro system to interrogate the mechanisms underlying drug-induced toxicity during cardiomyocyte differentiation, including anticancer tyrosine kinase inhibitor (TKI) drugs (imatinib, sunitinib, and vandetanib). H1-ESCs were treated with these drugs at sublethal levels during cardiomyocyte differentiation. We found that early exposure to TKIs during differentiation induced obvious toxic effects in differentiated cardiomyocytes, including disarranged sarcomere structure, interrupted Ca2+-handling, and impaired mitochondrial function. As sunitinib exposure showed the most significant developmental cardiotoxicity of all TKIs, we further examine its effect with in-vivo experiments. Maternal sunitinib exposure caused fetal death, bioaccumulation, and histopathologic changes in the neonatal mice. Integrative analysis of both transcriptomic and chromatin accessibility landscapes revealed that TKI-exposure altered GATA4-mediated regulatory network, which included key mitochondrial genes. Overexpression of GATA4 with CRISPR-activation restored morphologies, contraction, and mitochondria function in cardiomyocytes upon TKI exposure early during differentiation. Altogether, our study identified a novel crosstalk mechanism between GATA4 activity and mitochondrial function during cardiomyocyte differentiation, and revealed potential therapeutic approaches for reducing TKI-induced developmental cardiotoxicity for human health.HighlightsEarly-stage exposure to TKIs induced cardiotoxicity and mitochondrial dysfunctionGATA4 transcriptional activity is inhibited by TKIsNetwork analysis reveals interactions between GATA4 and mitochondrial genesGATA4-overexpression rescues cardiomyocytes and mitochondria from TKI exposure

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3