Bursting mitral cells time the oscillatory coupling between olfactory bulb and entorhinal networks in neonatal mice

Author:

Kostka Johanna K.ORCID,Gretenkord SabineORCID,Hanganu-Opatz Ileana L.ORCID

Abstract

ABSTRACTShortly after birth, the olfactory system provides to blind, deaf, non-whisking and motorically-limited rodents not only the main source of environmental inputs, but also the drive boosting the functional entrainment of limbic circuits. However, the cellular substrate of this early communication remains largely unknown. Here we combine in vivo and in vitro patch-clamp and extracellular recordings to reveal the contribution of mitral cell (MC) firing to the early patterns of network activity in the neonatal olfactory bulb (OB) and lateral entorhinal cortex (LEC), the gatekeeper of limbic circuits. We show that MCs predominantly fire either in an irregular bursting or non-bursting pattern during discontinuous theta events in OB. However, the temporal spike-theta phase coupling is stronger for bursting MCs when compared to non-bursting cells. In line with the direct OB projections to LEC, both bursting and non-bursting firing augments during coordinated patterns of entorhinal activity, yet to a higher magnitude for bursting MCs. These cells are stronger temporally coupled to the discontinuous theta events in LEC. Thus, bursting MCs might drive the entrainment of OB-LEC network during neonatal development.KEY POINTSDuring early postnatal development mitral cells show either irregular bursting or non-bursting firing patternsBursting mitral cells preferentially fire during theta bursts in the neonatal OB, being locked to the theta phaseBursting mitral cells preferentially fire during theta bursts in the neonatal lateral entorhinal cortex and are temporally related to both respiration rhythm- and theta phaseBursting mitral cells act as cellular substrate of the olfactory drive promoting the oscillatory entrainment of entorhinal networks

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3