SH3KBP1 scaffolds endoplasmic reticulum and controls skeletal myofibers architecture and integrity

Author:

Guiraud Alexandre,Christin EmilieORCID,Couturier Nathalie,Kretz-Remy Carole,Janin AlexandreORCID,Ghasemizadeh AlirezaORCID,Durieux Anne-Cécile,Arnould David,Romero Norma Beatriz,Bui Mai Thao,Buchman Vladimir L.,Julien Laura,Bitoun MarcORCID,Gache VincentORCID

Abstract

AbstractThe building block of skeletal muscle is the multinucleated muscle fiber, formed by the fusion of hundreds of mononucleated precursor cells, myoblasts. In the normal course of muscle fiber development or regeneration, myonuclei are actively positioned throughout muscular development and adopt special localization in mature fibers: regular spacing along muscle fibers periphery, raising the notion of MyoNuclear Domains (MNDs). There is now growing support for a direct connection between myonuclear positioning and normal function of muscles, but how myonuclei affects muscle function remains poorly characterized.To identify new factors regulating forces applied on myonuclei in muscles fibers, we performed a siRNA screen and identified SH3KBP1 as a new factor controlling myonuclear positioning in early phases of myofibers formation. Depletion of SH3KBP1 induces a reset of MNDs establishment in mature fibers reflected by a dramatic reduction in pairwise distance between myonuclei. We show that SH3KBP1 scaffolds Endoplasmic Reticulum (ER) in myotubes that in turn controls myonuclei velocity and localization and thus myonuclear domains settings. Additionally, we show that in later phases of muscle maturation, SH3KBP1 contributes to the formation and maintenance of Sarcoplasmic Reticulum (SR) and Transverse-tubules (T-tubules). We also demonstrate that in muscle fibers, GTPase dynamin-2 (DNM2) binds to SH3 domains of SH3KBP1. Interestingly, we observed thatSh3kbp1mRNA is up regulated in a mouse model harboring the most frequent mutation for Autosomal Dominant CentroNuclear Myopathy (AD-CNM):Dnm2+/R465W. SH3KBP1 thus appears as a compensation mechanism in this CNM model since its depletion contributes to an increase of CNM-like phenotypes (reduction of muscle fibers Cross-section Areas (CSA) and increase in slow fibers content).Altogether our results identify SH3KBP1 as a new regulator of myonuclear domains establishment in the early phase of muscle fibers formation through ER scaffolding and later in myofibers integrity through T-tubules scaffolding/maintenance.SummaryMyonuclei are actively positioned throughout muscular development. Guiraud, Christin, Couturieret alshow that SH3KBP1 scaffolds the ER through Calnexin interaction and controls myonuclei motion during early steps of muscle fibers formation. Besides SH3KBP1 participates in cell fusion and T-tubules formation/maintenance in mature skeletal muscle fibers and contributes to slow-down CNM-like phenotypes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3