A Deep Feature Learning Approach for Mapping the Brain’s Microarchitecture and Organization

Author:

Balwani Aishwarya H.ORCID,Dyer Eva L.

Abstract

AbstractModels of neural architecture and organization are critical for the study of disease, aging, and development. Unfortunately, automating the process of building maps of microarchitectural differences both within and across brains still remains a challenge. In this paper, we present a way to build data-driven representations of brain structure using deep learning. With this model we can build meaningful representations of brain structure within an area, learn how different areas are related to one another anatomically, and use this model to discover new regions of interest within a sample that share similar characteristics in terms of their anatomical composition. We start by training a deep convolutional neural network to predict the brain area that it is in, using only small snapshots of its immediate surroundings. By requiring that the network learn to discriminate brain areas from these local views, it learns a rich representation of the underlying anatomical features that allow it to distinguish different brain areas. Once we have the trained network, we open up the black box, extract features from its last hidden layer, and then factorize them. After forming a low-dimensional factorization of the network’s representations, we find that the learned factors and their embeddings can be used to further resolve biologically meaningful subdivisions within brain regions (e.g., laminar divisions and barrels in somatosensory cortex). These findings speak to the potential use of neural networks to learn meaningful features for modeling neural architecture, and discovering new patterns in brain anatomy directly from images.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpretable machine learning as a tool for scientific discovery in chemistry;New Journal of Chemistry;2020

2. A Generative Modeling Approach for Interpreting Population-Level Variability in Brain Structure;Medical Image Computing and Computer Assisted Intervention – MICCAI 2020;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3