Cis-regulatory elements within TEs can influence expression of nearby maize genes

Author:

Noshay Jaclyn MORCID,Marand Alexandre P,Anderson Sarah NORCID,Zhou PengORCID,Guerra Maria Katherine Mejia,Lu Zefu,O’Connor Christine,Crisp Peter A,Hirsch Candice N.,Schmitz Robert J,Springer Nathan MORCID

Abstract

AbstractTransposable elements (TEs) have the potential to create regulatory variation both through disruption of existing DNA regulatory elements and through creation of novel DNA regulatory elements. In a species with a large genome, such as maize, the many TEs interspersed with genes creates opportunities for significant allelic variation due to TE presence/absence polymorphisms among individuals. We used information on putative regulatory elements in combination with knowledge about TE polymorphisms in maize to identify TE insertions that interrupt existing accessible chromatin regions (ACRs) in B73 as well as examples of polymorphic TEs that contain ACRs among four inbred lines of maize including B73, Mo17, W22, and PH207. The TE insertions in three other assembled maize genomes (Mo17, W22 or PH207) that interrupt ACRs that are present in the B73 genome can trigger changes to the chromatin suggesting the potential for both genetic and epigenetic influences of these insertions. Nearly 20% of the ACRs located over 2kb from the nearest gene are located within an annotated TE. These are regions of unmethylated DNA that show evidence for functional importance similar to ACRs that are not present within TEs. Using a large panel of maize genotypes we tested if there is an association between the presence of TE insertions that interrupt, or carry, an ACR and the expression of nearby genes. TEs that carry ACRs exhibit an enrichment for being associated with higher expression of nearby genes, suggesting that these TEs may create novel regulatory elements. These analyses highlight the potential for TEs to rewire transcriptional responses in eukaryotic genomes.Data AvailabilityIn this study we utilize previously published datasets that are available through the following accessions: SRX4727413, SRR8738272, and SRR8740852.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3