Abstract
AbstractCell polarity is essential for various asymmetric cellular events, where the partitioning defective (PAR) protein, PAR3, plays a unique role as a cellular landmark to establish polarity. In epithelial cells, PAR3 localizes at the subapical border such as the tight junction in vertebrates and functions as an apical determinant. Although there is much information about the regulators of PAR3 localization, the mechanism involved in PAR3 concentration and localization to the specific membrane domain remains an important question to be clarified. In this study, we demonstrate that ASPP2, a stimulator of PAR3 localization, can link PAR3 and protein phosphatase 1 (PP1). The ASPP2–PP1 complex dephosphorylates a novel phosphorylation site, Ser852, of PAR3. Furthermore, Ser852- or Ser889-unphosphorylatable PAR3 mutants form protein clusters and ectopically localize to the lateral membrane. Concomitance of clustering and ectopic localization suggests that PAR3 localization is a consequence of local clustering. We also demonstrate that unphosphorylatable forms of PAR3 are static in molecular turnover and fail to coordinate rapid reconstruction of the tight junction, supporting that both phosphorylated and dephosphorylated states are essential for the functional integrity of PAR3.Summary statementWe show that phosphorylation and dephosphorylation regulate clustering of PAR-3, a cell polarity-regulating factor, and how the clustering regulation affects localization of PAR-3 and cell-cell junction formation.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献