Phosphoproteomics identifies microglial Siglec-F inflammatory response during neurodegeneration

Author:

Morshed NaderORCID,Ralvenius William T.ORCID,Nott AlexiORCID,Watson L. Ashley,Rodriguez Felicia H.ORCID,Akay Leyla A.ORCID,Joughin Brian A.ORCID,Pao Ping-ChiehORCID,Penney Jay,LaRocque Lauren,Mastroeni DiegoORCID,Tsai Li-HueiORCID,White Forest M.ORCID

Abstract

SummaryAlzheimer’s disease (AD) is characterized by the appearance of amyloid-β plaques, neurofibrillary tangles, and inflammation in brain regions involved in memory. Using mass spectrometry, we have quantified the phosphoproteome of the CK-p25, 5XFAD, and Tau P301S mouse models of neurodegeneration. We identified a shared response involving Siglec-F which was upregulated on a subset of reactive microglia. The human paralog Siglec-8 was also upregulated on microglia in AD. Siglec-F and Siglec-8 were upregulated following microglial activation with interferon gamma (IFNγ) in BV-2 cell line and human stem-cell derived microglia models. Siglec-F overexpression activates an endocytic and pyroptotic inflammatory response in BV-2 cells, dependent on its sialic acid substrates and immunoreceptor tyrosine-based inhibition motif (ITIM) phosphorylation sites. Related human Siglecs induced a similar response in BV-2 cells. Collectively, our results point to an important role for mouse Siglec-F and human Siglec-8 in regulating microglial activation during neurodegeneration.HighlightsPhosphoproteomics analysis of CK-p25, 5XFAD, and Tau P301S mouse models finds dysregulated signaling networks associated with Alzheimer’s disease pathologies.A phosphorylation site on Siglec-F is found to be upregulated across all three models of disease.Expression of Siglec-F and its human paralog Siglec-8 is increased in reactive microglia.Overexpression of Siglec-F and Siglec-8in vitrodrives an endocytic and pyroptotic inflammatory response.In BriefPhosphoproteome signaling changes associated with Alzheimer’s disease (AD) are poorly characterized. Here, Morshed et al. apply phosphoproteomics to mouse models of AD to uncover a novel microglial receptor, Siglec-F, that is upregulated on a subset of inflammatory microglia across models of neurodegeneration. The human paralog, Siglec-8 is also found to be upregulated in late-onset AD microglia. Overexpression of Siglec-F and related human Siglecs activates pro-inflammatory signaling responses in BV-2 cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3