Polymer-assisted intratumoral delivery of ethanol: Preclinical investigation of safety and efficacy in a murine breast cancer model

Author:

Nief Corrine A.ORCID,Morhard Robert,Chelales Erika,Alvarez Daniel Adrianzen,Bourla Ioanna,Lam Christopher T.,Sag Alan A.ORCID,Crouch Brian T.ORCID,Mueller Jenna L.,Katz David,Dewhirst Mark W.,Everitt Jeffrey I.,Ramanujam Nirmala

Abstract

AbstractFocal tumor ablation with ethanol could provide benefits in low-resource settings because of its low overall cost, minimal imaging technology requirements, and acceptable clinical outcomes. Unfortunately, ethanol ablation is not commonly utilized because of a lack of predictability of the ablation zone, caused by inefficient retention of ethanol at the injection site. To create a predictable zone of ablation, we have developed a polymer-assisted ablation method using ethyl cellulose (EC) mixed with ethanol. EC is ethanol-soluble and water-insoluble, allowing for EC-ethanol to be injected as a liquid and precipitate into a solid, occluding the leakage of ethanol upon contact with tissue. The aims of this study were to compare the 1) safety, 2) release kinetics, 3) spatial distribution, 4) necrotic volume, and 5) overall survival of EC-ethanol to conventional ethanol ablation in a murine breast tumor model. Non-target tissue damage was monitored through localized adverse events recording, ethanol release kinetics with Raman spectroscopy, injectate distribution with in vivo imaging, target-tissue necrosis with NADH-diaphorase staining, and overall survival by proxy of tumor growth. EC-ethanol exhibited decreased localized adverse events, a slowing of the release rate of ethanol, more compact injection zones, 5-fold increase in target-tissue necrosis, and longer overall survival rates compared to the same volume of pure ethanol. A single 150 µL dose of 6% EC-ethanol achieved a similar survival probability rates to six daily 50 µL doses of pure ethanol used to simulate a slow-release of ethanol over 6 days. Taken together, these results demonstrate that EC-ethanol is safer and more effective than ethanol alone for ablating tumors.Graphical AbstractThe inclusion of ethylcellulose limits extra-tumoral leakage of ethanol and increases the target-tissue ablation.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

1. Ablation of Skeletal Metastases: Current Status

2. Image-Guided Percutaneous Ablation of Bone and Soft Tissue Tumors

3. Chemical Ablation of Hepatocellular Carcinoma

4. Long Term Results of Single Session Percutaneous Ethanol Injection in Patients with Large Hepatocellular Carcinoma;Cancer,1996

5. A. D. S. A. Giorgio , G. De Stefano , U. Scognamiglio , N. Farella , A. Mariniello , V. Esposito , C. Coppola and V. Giorgio , Percutaneous Radiofrequency Ablation of Hepatocellular Carcinoma Compared to Percutaneous Ethanol Injection in Treatment of Cirrhotic Patients: An Italian Randomized Controlled Trial. Anticancer Research 31, (2011).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3