Motion opponency examined throughout visual cortex with multivariate pattern analysis of fMRI data

Author:

Silva Andrew E.ORCID,Thompson BenjaminORCID,Liu ZiliORCID

Abstract

AbstractThis study explores how the human brain solves the challenge of flicker noise in motion processing. Despite providing no useful directional motion information, flicker is common in the visual environment and exhibits omnidirectional motion energy which is processed by low-level motion detectors. Models of motion processing propose a mechanism called motion opponency that reduces the processing of flicker noise. Motion opponency involves the pooling of local motion signals to calculate an overall motion direction. A neural correlate of motion opponency has been observed in human area MT+/V5 using fMRI, whereby stimuli with perfectly balanced motion energy constructed from dots moving in counter-phase elicit a weaker BOLD response than non-balanced (in-phase) motion stimuli. Building on this previous work, we used multivariate pattern analysis to examine whether the patterns of brain activation elicited by motion opponent stimuli resemble the activation elicited by flicker noise across the human visual cortex. Robust multivariate signatures of opponency were observed in V5 and in V3A. Our results support the notion that V5 is centrally involved in motion opponency and in the reduction of flicker noise during visual processing. Furthermore, these results demonstrate the utility of powerful multivariate analysis methods in revealing the role of additional visual areas, such as V3A, in opponency and in motion processing more generally.HighlightsOpponency is demonstrated in multivariate and univariate analysis of V5 data.Multivariate fMRI also implicates V3A in motion opponency.Multivariate analyses are useful for examining opponency throughout visual cortex.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3