Surface display of designer protein scaffolds on genome-reduced strains of Pseudomonas putida

Author:

Dvořák PavelORCID,Bayer Edward A.ORCID,de Lorenzo VíctorORCID

Abstract

AbstractThe bacterium Pseudomonas putida KT2440 is gaining considerable interest as a microbial platform for biotechnological valorization of polymeric organic materials, such as waste lignocellulose or plastics. However, P. putida on its own cannot make much use of such complex substrates, mainly because it lacks an efficient extracellular depolymerizing apparatus. We seek to meet this challenge by adopting a recombinant cellulosome strategy for this attractive host. Here, we report an essential step in this endeavor – a display of designer enzyme-anchoring protein “scaffoldins”, encompassing cohesin binding domains from divergent cellulolytic bacterial species on the P. putida surface. Two P. putida chassis strains, EM42 and EM371, with streamlined genomes and substantial differences in the composition of the outer membrane were employed in this study. Scaffoldin variants were delivered to their surface with one of four tested autotransporter systems (Ag43 from Escherichia coli), and the efficient display was confirmed by extracellular attachment of chimeric β-glucosidase and fluorescent proteins. Our results highlight the importance of cell surface engineering for display of recombinant proteins in Gram-negative bacteria and pave the way towards designer cellulosome strategies, tailored for P. putida.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Engineering Microbes to Bio-Upcycle Polyethylene Terephthalate;Frontiers in Bioengineering and Biotechnology;2021-05-28

2. Industrial biotechnology of Pseudomonas putida: advances and prospects;Applied Microbiology and Biotechnology;2020-08-13

3. Naked Bacterium: Emerging Properties of a Surfome-Streamlined Pseudomonas putida Strain;ACS Synthetic Biology;2020-07-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3