Functional and Structural Moment Arm Validation for Musculoskeletal Models: A Study of the Human Forearm and Hand

Author:

Boots Matthew TORCID,Hardesty RussellORCID,Sobinov AntonORCID,Gritsenko ValeriyaORCID,Collinger Jennifer L.ORCID,Fisher Lee E.ORCID,Gaunt RobertORCID,Yakovenko SergiyORCID

Abstract

AbstractThe development of realistic musculoskeletal models is a fundamental goal for the theoretical progress in sensorimotor control and its engineering applications, e.g., in the biomimetic control of artificial limbs. Yet, accurate models require extensive experimental measures to validate structural and functional parameters describing muscle state over the full physiological range of motion. However, available experimental measurements of, for example, muscle moment arms are sparse and often disparate. Validation of these models is not trivial because of the highly complex anatomy and behavior of human limbs. In this study, we developed a method to validate and scale kinematic muscle parameters using posture-dependent moment arm profiles, isometric force measurements, and a computational detection of assembly errors. We used a previously published model with 18 degrees of freedom (DOFs) and 32 musculotendon actuators with force generated from a Hill-type muscle model. The muscle path from origin to insertion with wrapping geometry was used to model the muscle lengths and moment arms. We simulated moment arm profiles across the full physiological range of motion and compared them to an assembled dataset of published and merged experimental profiles. The muscle paths were adjusted using custom metrics based on root-mean-square and correlation coefficient of the difference between simulated and experimental values. Since the available measurements were sparse and the examination of high-dimensional muscles is challenging, we developed analyses to identify common failures, i.e., moment arm functional flipping due to the sign reversal in simulated moments and the imbalance of force generation between antagonistic groups in postural extremes. The validated model was used to evaluate the expected errors in torque generation with the assumption of constant instead of the posture-dependent moment arms at the wrist flexion-extension DOF, which is the critical joint in our model with the largest number of crossing muscles. We found that there was a reduction of joint torques by about 35% in the extreme quartiles of the wrist DOF. The use of realistic musculoskeletal models is essential for the reconstruction of hand dynamics. These models may improve the understanding of muscle actions and help in the design and control of artificial limbs in future applications.New & NoteworthyRealistic models of human limbs are a development goal required for the understanding of motor control and its applications in biomedical fields. However, developing accurate models is restrained by the lack of accurate and reliable musculoskeletal measurements in humans. Here, we have overcome this challenge by using multi-stage validation of simulated structures using both experimental data and the identification of structural failures in the high-dimensional muscle paths. We demonstrate that the rigorous structural and functional validation method is essential for the understanding of force generation at the wrist.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3