Neuronal circuitry underlying female aggression in Drosophila

Author:

Schretter Catherine E.,Aso YoshinoriORCID,Dreher Marisa,Robie Alice A.,Dolan Michael-JohnORCID,Chen Nan,Ito Masayoshi,Yang Tansy,Parekh Ruchi,Rubin Gerald M.ORCID

Abstract

AbstractAggressive social interactions are used to compete for limited resources and are regulated by complex sensory cues and the organism’s internal state. While both sexes exhibit aggression, its neuronal underpinnings are understudied in females. Here, we describe a set of connected neurons in the adult Drosophila melanogaster central brain that drive female aggression. We identified a population of sexually dimorphic aIPg neurons whose optogenetic activation increased, and genetic inactivation reduced, female aggression. Analysis of GAL4 lines identified in an unbiased screen for increased female chasing behavior revealed the involvement of another sexually dimorphic neuron, pC1d, and implicated pC1d and aIPg neurons as core nodes regulating female aggression. pC1d activation increased female aggression and electron microscopy (EM) connectomic analysis demonstrated that aIPg neurons and pC1d have strong reciprocal connections. Our work reveals important regulatory components of the neuronal circuitry that underlies female aggressive social interactions and provides tools for their manipulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3