Velcro-like mannose and slime-like sialic acid interactions guide self-adhesion and aggregation of virus N-glycan shields

Author:

Ogharandukun Eric,Tewolde Wintana,Damtae Elbethel,Wang Songping,Ivanov Andrey,Kumari Namita,Nekhai Sergei,Chandran Preethi L.ORCID

Abstract

AbstractThe surfaces of cells and pathogens are covered with short polymers of sugars known as glycans. Complex N-glycans have a core of three mannose sugars, with distal repeats of N-acetylglucosamine and galactose sugars terminating with sialic acid (SA). Long-range slime-like and short-range Velcro-like self-adhesions were observed between SA and mannose residues, respectively, in ill-defined monolayers. We investigated if and how these adhesions translate when SA and mannose residues are presented in complex N-glycan shields on two pseudo-typed viruses brought together in force spectroscopy (FS). Slime-like adhesions were observed between the shields at higher ramp rates, whereas Velcro-like adhesions were observed at lower rates. The complex glycan shield appears penetrable at the lower ramp rates allowing the adhesion from the mannose core to be accessed; whereas the whole virus appears compressed at higher rates permitting only surface SA adhesions to be sampled. The slime-like and velcro-like adhesions were lost when SA and mannose, respectively, were cleaved with glycosidases. While virus self-adhesion in FS was modulated by glycan penetrability, virus self-aggregation in solution was only determined by the surface sugar. Mannose-terminal viruses self-aggregated in solution, while SA-terminal ones required Ca2+ions to self-aggregate. Viruses with galactose or N-acetylglucosamine surfaces did not self-aggregate, irrespective of whether or not a mannose core was present below the N-acetylglucosamine surface. Well-defined rules appear to govern the self-adhesion and -aggregation of N-glycosylated surfaces, regardless of whether the sugars are presented in ill-defined monolayer, or N-glycan, or even polymer architecture.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3