Effects of Antipsychotic Drugs and Potassium Channel Modulators on Cognition-related Local Field Potential Spectral Properties in Mouse Hippocampus and Frontal Cortex

Author:

Sun Dechuan,Kermani Mojtaba,Hudson Matt,He Xin,Rajasekharan Unnithan Ranjith,French Chris

Abstract

AbstractLocal field potentials (LFPs) recorded intracranially display a range of location specific oscillatory spectra which have been related to cognitive processes. Although the exact mechanisms producing LFPs are not completely understood, it is likely that voltage-gated ion channels which produce action potentials and patterned discharges play a significant role. It is also known that antipsychotic drugs (APDs) affect LFPs spectra and a direct inhibitory effect on voltage-gated potassium (Kv) channels has been reported. Additionally, Kv channels have been implicated in the pathophysiology of schizophrenia, a disorder for which APDs are primary therapies. In this study we sought to: i) better characterise the effects of two APDs on LFPs and connectivity measures and ii) examine the effects of potassium channel modulators on LFPs and potential overlap of effects with APDs. Intracranial electrodes were implanted in the hippocampus (HIP) and pre-frontal cortex (PFC) of C57BL/6 mice; power spectra, coherence and phase-amplitude cross frequency coupling were measured. Drugs tested were the APDs haloperidol and clozapine as well as voltage-gated potassium channel modulators (KVMs) 4-aminopyridine(4AP), tetraethylammonium (TEA), E-4031 and retigabine. All drugs and vehicle controls were administered intraperitoneally. Both APDs and KVMs significantly reduced gamma power with the exception of 4AP, which conversely increased slow-gamma power. Clozapine and retigabine additionally reduced coherence between HIP and PFC. Phase-amplitude coupling between theta and gamma oscillations in HIP was significantly reduced by the administration of haloperidol and retigabine. These results provide previously undescribed effects of APDs on LFP properties and demonstrate novel modulation of LFP characteristics by KVMs that intriguingly overlaps with the effects of APDs. The possibility of a common mechanism of action deserves further study.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3