Ribosomal Protein Large subunit RPL6 modulates salt tolerance in rice

Author:

Moin MazaharORCID,Saha Anusree,Bakshi AchalaORCID,Madhav M. S.,Kirti P B

Abstract

AbstractThe extra-ribosomal functions of ribosomal proteins RPL6 and RPL23a in stress-responsiveness have emanated from our previous studies on activation tagged mutants of rice screened for water-use efficiency (Moin et al., 2016a). In the present study, we functionally validated the RPL6, a Ribosomal Protein Large subunit member for salt stress tolerance in rice. The overexpression of RPL6 resulted in tolerance to moderate (150 mM) to high (200 mM) levels of salt (NaCl) in rice. The transgenic rice plants expressing RPL6 constitutively showed better phenotypic and physiological responses with high quantum efficiency, accumulation of more chlorophyll and proline contents, and an overall increase in seed yield compared with the wild type in salt stress treatments. An iTRAQ-based comparative proteomic analysis revealed the high expression of about 333 proteins among the 4,378 DEPs in a selected overexpression line of RPL6 treated with 200 mM of NaCl. The functional analysis showed that these highly expressed proteins (HEPs) are involved in photosynthesis, ribosome and chloroplast biogenesis, ion transportation, transcription and translation regulation, phytohormone and secondary metabolite signal transduction. An in silico network analysis of HEPs predicted that RPL6 binds with translation-related proteins and helicases, which coordinately affects the activities of a comprehensive signaling network, thereby inducing tolerance and promoting growth and yield in response to salt stress. Our overall findings identified a novel candidate, RPL6 whose characterization contributed to the existing knowledge on the complexity of salt tolerance mechanism in plants.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3