Inferring TF activities and activity regulators from gene expression data with constraints from TF perturbation data

Author:

Ma Cynthia,Brent Michael R.ORCID

Abstract

ABSTRACTBackgroundThe activity of a transcription factor (TF) in a sample of cells is the extent to which it is exerting its regulatory potential. Many methods of inferring TF activity from gene expression data have been described, but due to the lack of appropriate large-scale datasets, systematic and objective validation has not been possible until now.ResultsUsing a new dataset, we systematically evaluate and optimize the approach to TF activity inference in which a gene expression matrix is factored into a condition-independent matrix of control strengths and a condition-dependent matrix of TF activity levels. These approaches require a TF network map, which specifies the target genes of each TF, as input. We evaluate different approaches to building the network map and deriving constraints on the matrices. We find that such constraints are essential for good performance. Constraints can be obtained from expression data in which the activities of individual TFs have been perturbed, and we find that such data are both necessary and sufficient for obtaining good performance. Remaining uncertainty about whether a TF activates or represses a target is a major source of error. To a considerable extent, control strengths inferred using expression data from one growth condition carry over to other conditions. As a result, the control strength matrices derived here can be used for other applications. Finally, we apply these methods to gain insight into the upstream factors that regulate the activities of four yeast TFs: Gcr2, Gln3, Gcn4, and Msn2. Evaluation code and data available at https://github.com/BrentLab/TFA-evaluationConclusionsWhen a high-quality network map, constraints, and perturbation-response data are available, inferring TF activity levels by factoring gene expression matrices is effective. Furthermore, it provides insight into regulators of TF activity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3