Worker-behavior and behavior-behavior interaction networks in the trap-jaw ant Odontomachus chelifer (Latreille, 1802) (Hymenoptera: Formicidae)

Author:

Neves Felipe MarcelORCID,Borges Marcelo EduardoORCID,Pie Marcio R.ORCID

Abstract

AbstractDivision of labor is among the main factors to explain the evolutionary success of social systems, from the origins of multicellularity to complex animal societies. The remarkable ecological success of social insects seems to have been largely driven by ergonomic advantages stemming from the behavioral specialization of workers. However, little is known about how individuals and their corresponding behavioral repertoires are related to each other within a division of labor context, particularly by viewing such relationships as complex networks. Applications of network theory to the study of social insects are almost exclusively used to analyze behavioral interactions between individuals, rather than to the study of relations among individuals and behaviors. Here, we use an approach to the study of the organization of the behavioral repertoire of ant colonies that considers both individual-behavior interactions and behavior-behavior interactions, besides colony time budgets. Our study investigates the organization of division of labor in colonies of the trap-jaw ant Odontomachus chelifer (Latreille, 1802). All the behavioral acts (including inactivity) performed within three queenright colonies of different sizes (n = 7, 30, and 60 workers) were studied under controlled laboratory conditions. Each ant was individually marked and observed by scan sampling in 10 min intervals for 10 h each (n = 5,919 behavioral acts). We describe the network topologies in terms of centrality, specialization, modularity, and nestedness. This study shows that workers of O. chelifer are organized according to structured networks, composed of individuals exhibiting varying degrees of specialization. The observed centrality scores indicate that some behaviors could have a disproportionately larger impact on the network organization (especially self-grooming). The results underscore the potential of the use of complex networks (particularly measures of modularity and nestedness) in order to discover and study novel organizational patterns of social groups in animal behavior.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3