TractLearn: a geodesic learning framework for quantitative analysis of brain bundles

Author:

Attyé ArnaudORCID,Renard Félix,Baciu Monica,Roger Elise,Lamalle Laurent,Dehail Patrick,Cassoudesalle Hélène,Calamante Fernando

Abstract

ABSTRACTDeep learning-based convolutional neural networks have recently proved their efficiency in providing fast segmentation of major brain fascicles structures, based on diffusion-weighted imaging. The quantitative analysis of brain fascicles then relies on metrics either coming from the tractography process itself or from each voxel along the bundle.Statistical detection of abnormal voxels in the context of disease usually relies on univariate and multivariate statistics models, such as the General Linear Model (GLM). Yet in the case of high-dimensional low sample size data, the GLM often implies high standard deviation range in controls due to anatomical variability, despite the commonly used smoothing process. This can lead to difficulties to detect subtle quantitative alterations from a brain bundle at the voxel scale.Here we introduce TractLearn, a unified framework for brain fascicles quantitative analyses by using geodesic learning as a data-driven learning task. TractLearn allows a mapping between the image high-dimensional domain and the reduced latent space of brain fascicles using a Riemannian approach.We illustrate the robustness of this method on a healthy population with test-retest acquisition of multi-shell diffusion MRI data, demonstrating that it is possible to separately study the global effect due to different MRI sessions from the effect of local bundle alterations. We have then tested the efficiency of our algorithm on a sample of 5 age-matched subjects referred with mild traumatic brain injury.Our contributions are to propose an algorithm based on:1/ A manifold approach to capture controls variability as standard reference instead of an atlas approach based on a Euclidean mean2/ The ability to detect global variation of voxels quantitative values, which means that all the voxels interaction in a structure are considered rather than analyzing each voxel independently.With this regard, TractLearn is a ready-to-use algorithm for precision medicine.KEY POINTWe provide a statistical test taking into account the interaction between voxelsWe propose to use a Riemaniann manifold as reference instead of a Euclidean meanWe demonstrate the usefulness and reliability of the track-weighted contrast

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3