Explication of CB1 receptor contributions to the hypothermic effects of Δ9-tetrahydrocannabinol (THC) when delivered by vapor inhalation or parenteral injection in rats

Author:

Nguyen Jacques D.ORCID,Creehan K. M.,Grant Yanabel,Vandewater Sophia A.,Kerr Tony M.,Taffe Michael A.ORCID

Abstract

AbstractThe use of Δ9-tetrahydrocannabinol (THC) by inhalation using e-cigarette technology grows increasingly popular for medical and recreational purposes. This has led to development of e-cigarette based techniques to study the delivery of THC by inhalation in laboratory rodents. Inhaled THC reliably produces hypothermic and antinociceptive effects in rats, similar to effects of parenteral injection of THC. This study was conducted to determine the extent to which the hypothermic response depends on interactions with the CB1 receptor, using pharmacological antagonist (SR141716, AM-251) approaches. Groups of rats were implanted with radiotelemetry devices capable of reporting activity and body temperature, which were assessed after THC inhalation or injection. SR141716 (4 mg/kg, i.p.) blocked or attenuated antinociceptive effects of acute THC inhalation in male and female rats. SR141716 was unable to block the initial hypothermia caused by THC inhalation, but temperature was restored to normal more quickly. Alterations in antagonist pre-treatment time, dose and the use of a rat strain with less sensitivity to THC-induced hypothermia did not change this pattern. Pre-treatment with SR141716 (4 mg/kg, i.p.) blocked hypothermia induced by i.v. THC and reversed hypothermia when administered 45 or 90 minutes after THC (i.p.). SR141716 and AM-251 (4 mg/kg, i.p.) sped recovery from, but did not block, hypothermia caused by vapor THC in female rats made tolerant by prior repeated THC vapor inhalation. The CB2 antagonist AM-630, had no effect. These results suggest that hypothermia consequent to THC inhalation is induced by other mechanisms in addition to CB1 receptor activation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3