Predictive mathematical models for the number of individuals infected with COVID-19

Author:

Fokas A.S.,Dikaios N.ORCID,Kastis G.A.ORCID

Abstract

AbstractWe model the time-evolution of the number N(t) of individuals reported to be infected in a given country with a specific virus, in terms of a Riccati equation. Although this equation is nonlinear and it contains time-dependent coefficients, it can be solved in closed form, yielding an expression for N(t) that depends on a function α(t). For the particular case that α(t) is constant, this expression reduces to the well-known logistic formula, giving rise to a sigmoidal curve suitable for modelling usual epidemics. However, for the case of the COVID-19 pandemic, the long series of available data shows that the use of this simple formula for predictions underestimates N(t); thus, the logistic formula only provides a lower bound of N(t). After experimenting with more than 50 different forms of α(t), we introduce two novel models that will be referred to as “rational” and “birational”. The parameters specifying these models (as well as those of the logistic model), are determined from the available data using an error-minimizing algorithm. The analysis of the applicability of the above models to the cases of China and South Korea suggest that they yield more accurate predictions, and importantly that they may provide an upper bound of the actual N(t). Results are presented for Italy, Spain, and France.

Publisher

Cold Spring Harbor Laboratory

Reference22 articles.

1. A pneumonia outbreak associated with a new coronavirus of probable bat origin

2. A Novel Coronavirus Emerging in China — Key Questions for Impact Assessment

3. First Case of 2019 Novel Coronavirus in the United States

4. Ferguson NM , Laydon D , Nedjati-Gilani G , Imai N , Ainslie K , Baguelin M , Bhatia S , Boonyasiri A ., Cucunubá Z , Cuomo-Dannenburg G ., et al. (2020). Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. London: Imperial College COVID-19 Response Team, March 16, 2020.

5. A contribution to the mathematical theory of epidemics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3