Molecular interaction mechanism of a 14-3-3 protein with a phosphorylated peptide elucidated by enhanced conformational sampling

Author:

Higo Junichi,Kawabata Takeshi,Kusaka Ayumi,Kasahara Kota,Kamiya Narutoshi,Fukuda Ikuo,Mori Kentaro,Hata Yutaka,Fukunishi Yoshifumi,Nakamura Haruki

Abstract

ABSTRACTEnhanced conformational sampling, a genetic-algorithm-guided multi-dimensional virtual-system coupled molecular dynamics, can provide equilibrated conformational distributions of a receptor protein and a flexible ligand at room temperature. The distributions provide not only the most stable but also semi-stable complex structures, and propose a ligand–receptor binding process. This method was applied to a system consisting of a receptor protein, 14-3-3ε, and a flexible peptide, phosphorylated Myeloid leukemia factor 1 (pMLF1). The results present comprehensive binding pathways of pMLF1 to 14-3-3ε. We identified four thermodynamically stable clusters of MLF1 on the 14-3-3ε surface, and free-energy barriers among some clusters. The most stable cluster includes two high-density spots connected by a narrow corridor. When pMLF1 passes the corridor, a salt-bridge relay (switching) related to the phosphorylated residue of pMLF1 occurs. Conformations in one high-density spots are similar to the experimentally determined complex structure. Three-dimensional distributions of residues in the intermolecular interface rationally explain the binding-constant changes resultant from alanine–mutation experiment for the residues. We performed a simulation of non-phosphorylated peptide and 14-3-3ε, which demonstrated that the complex structure was unstable, suggesting that phosphorylation of the peptide is crucially important for binding to 14-3-3ε.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3