Density-Preserving Data Visualization Unveils Dynamic Patterns of Single-Cell Transcriptomic Variability

Author:

Narayan AshwinORCID,Berger BonnieORCID,Cho HyunghoonORCID

Abstract

Nonlinear data-visualization methods, such as t-SNE and UMAP, have become staple tools for summarizing the complex transcriptomic landscape of single cells in 2D or 3D. However, existing approaches neglect the local density of data points in the original space, often resulting in misleading visualizations where densely populated subpopulations of cells are given more visual space even if they account for only a small fraction of transcriptional diversity within the dataset. We present den-SNE and densMAP, our density-preserving visualization tools based on t-SNE and UMAP, respectively, and demonstrate their ability to facilitate more accurate visual interpretation of single-cell RNA-seq data. On recently published datasets, our methods newly reveal significant changes in transcriptomic variability within a range of biological processes, including cancer, immune cell specialization in human, and the developmental trajectory ofC. elegans. Our methods are readily applicable to visualizing high-dimensional data in other scientific domains.

Publisher

Cold Spring Harbor Laboratory

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ATOMIC: an Interpretable Clustering Method Based on Data Topology;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

2. Machine Learning Deciphered Molecular Mechanistics with Accurate Kinetic and Thermodynamic Prediction;Journal of Chemical Theory and Computation;2024-02-23

3. A unified framework for backpropagation-free soft and hard gated graph neural networks;Knowledge and Information Systems;2023-12-26

4. Mapping robust multiscale communities in chromosome contact networks;Scientific Reports;2023-08-10

5. Dimensionality reduction by t-Distribution adaptive manifold embedding;Applied Intelligence;2023-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3