Kmer2SNP: reference-free SNP calling from raw reads based on matching

Author:

Li YanboORCID,Lin YuORCID

Abstract

AbstractThe development of DNA sequencing technologies provides the opportunity to call heterozygous SNPs for each individual. SNP calling is a fundamental problem of genetic analysis and has many applications, such as gene-disease diagnosis, drug design, and ancestry inference. Reference-based SNP calling approaches generate highly accurate results, but they face serious limitations especially when high-quality reference genomes are not available for many species. Although reference-free approaches have the potential to call SNPs without using the reference genome, they have not been widely applied on large and complex genomes because existing approaches suffer from low recall/precision or high runtime.We develop a reference-free algorithm Kmer2SNP to call SNP directly from raw reads. Kmer2SNP first computes the k-mer frequency distribution from reads and identifies potential heterozygous k-mers which only appear in one haplotype. Kmer2SNP then constructs a graph by choosing these heterozygous k-mers as vertices and connecting edges between pairs of heterozygous k-mers that might correspond to SNPs. Kmer2SNP further assigns a weight to each edge using overlapping information between heterozygous k-mers, computes a maximum weight matching and finally outputs SNPs as edges between k-mer pairs in the matching.We benchmark Kmer2SNP against reference-free methods including hybrid (assembly-based) and assembly-free methods on both simulated and real datasets. Experimental results show that Kmer2SNP achieves better SNP calling quality while being an order of magnitude faster than the state-of-the-art methods. Kmer2SNP shows the potential of calling SNPs only using k-mers from raw reads without assembly. The source code is freely available at https://github.com/yanboANU/Kmer2SNP.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x/

2. ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/NIST_HiSeq_HG002_Homogeneity-10953946

3. ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/latest/GRCh38/

4. http://www.candidagenome.org

5. From fastq data to high-confidence variant calls: the genome analysis toolkit best practices pipeline;Current protocols in bioinformatics,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3